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ABSTRACT

The Space Shuttle program has relied heavily on simulation
throughout all phases of development and operation. Real-time,
man-in-the-loop simulation has served the NASAmanned-space-flight
program by providing the meansto evaluate systems design and integrated
systems performance in a simulated flight environment as well as provide
a meansto train flight crews.

Newchallenges are presented by the development and operation of a
permanently mannedSpace Station. The assembly of the Space Station,
the transferral of payloads and the use of the Space Station manipulator
to berth the Orbiter are operationslcritical to the success of the Space
Station. All these operations}are examples of constrained motion among
the bodies associated with the Orbiter and Space Station system.

Current real-time simulations of the Orbiter and Space Station do
not have the capability to model the dynamics of constrained motion.
Determining an efficient, yet general, method for constrained motion in
multibody systems is one essential key to high-fidelity of these
critical operations.

This report described the state-of-the-art of formulating the
governing dynamical equations of motion for constrained systems. The
uses of the two basic problems in multibody dynamics are discussed. The
most efficient formulations of the equations of motion are addressed
from the point of view of completeness. The issues surrounding
incorporating the constraints into the equations of motion are
presented. Finally, an overview of the strengths and weaknesses of the
current methods is given, along with somerecommendations for further
research.
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INTRODUCTION

The planned scenarios involving the Shuttle Orbiter, the Space

Station and their respective remote manipulators are examples of complex

dynamical systems subjected to kinematic constraints, see Figure I.

Figure 1 - Constrained motion between TRS and satellite

In order to develop realistic models of these activities, some of

the bodies may be considered to be rigid and others flexible. An

analysis of the flexibility of the bodies requires a complete knowledge

of the system dynamics so that quantitative expressions for the joint

forces and moments may be obtained. Having the capacity to formulate

completely the equations of motion with the appropriate constraint

equations and solve them is essential to any simulation of these

systems.

NASA has relied heavily on simulation throughout the Space Shuttle

program's development and operation. Real-time, man-in-the-loop

simulation has provided the means to evaluate systems design and

integrated systems performance in a simulated flight environment and to

train flight crews.
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Current real-time simulations of the Orbiter and SpaceStation do

not have the capability to model the dynamics of constrained motion.

Determining an efficient, yet general, method for simulating constrained

motion in multibody syst_ns would enhance the fidelity between the

man-in-the-loop simulation and critical on-orbit operations.

This report addresses the efficiency and completeness of current
formulations of the dynamics of constrained systems. Efficient

formulations are necessary since the goal is to run the simulation in

real-time. The formulation should also be complete since flexible

bodies may be included.

The balance of this report is divided into three parts with the

following part providing a discussion of the equations of motion. The

next part discusses incorporating the constraint equations. Concluding

remarks are given in the last part.

EQUATIONSOFMOTION

There are two basic problems in multibody dynamics. The first is

the problem of determining the motion of a system from a set of applied

forces; it is referred to as the forward dynamics problem. The second

is the problem of determining a set of forces required to produce a

prescribed motion in a system; it is referred to as the inverse dynamics

problem.

A solution of the inverse dynamics is essential in the dynamic

control of systems and manyefficient formulations have been developed

to implement real-time dynamic control. A solution of the forward

dynamics is essential in the simulation of dynamic systems. Usually the

forward dynamics are found by first formulating the inverse dynamics and
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then solving for the motion. Recently, several methods for improving

the efficiency of the forward dynamics solution have been developed.

The three main approaches towards deriving the dynamic equations of
motion for multibody systems with rigid elements have been the

Newton-Euler, the Lagrange and the Kanemethods. In all these methods

efficiency is derived from the structure of the computation. First the

linear and angular velocities and accelerations are computed rec_rsively

from the reference body to the end of the chain, then the forces and

torques are computed recursively from the end to the reference body.

4
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Figure 2 - A general chain system

Consider a multibody system such as shown in Figure 2. An

accounting system for the system connectivity may be developed by

arbitrarily selecting one of the bodies as a reference body and calling

it BI. Next, number the other bodies of the system arbitrarily. This

numbering of the bodies can be used to describe the chain structure or
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topology through the "body connection array" as follows: Let L(k), k =

1, ...,N be the array of the adjoining lower body of Bk. The lower body

is defined as the body adjoining Bk that is closest to the reference

body [i].

The angular velocity of a typical body Bk in the inertial frame,

Bo, is readily obtained by the recursion formula

k L(k) + L(kw : )k (i)

L(k)
where k and _ are the angular velocities of Bk and BL(k) relative

to the inertial frame and L(k)k is the angular velocity of Bk relative

to BL(k).

The angular acceleration of Bk in the inertial frame _nay be

obtained by differentiating equation (1) in the inertial Frame, leading

to the recursion formula

L(k) L(k) k L(k) X L(k) k
_k : _ + - + _ - (2)

where _k and L(k)_ are the angular accelerations of Bk and BL(k)

relative to the inertial frame and L(k) k is the angular acceleration of

Bk relative to BL(k).

Recursion formula can also be developed for the position, velocity

and acceleration of a point on any link [I-4].

A chain system of N rigid bodies will, in general, have 5N or fewer

degrees of freedom. This comes as a result of the fact that each rigid

body can have up to 6 degrees of freedom. Kinematic constraints between

members of the system reduce the number of degrees of freedom through

contact between kinematic pairs. Usually, the analysis is simplified by

introducing the kinematic constraints due to joints connecting the
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bodies of the system at an early stage. The systems's configuration is

then said to be completely determined by n generalized coordinates,

where n is the numberof degrees of freedom of the system. However, it

may occur that a contact between bodies maybe made or broken as the

motion of the system progresses. Figure 3 shows a case where two more

bodies of the system in Figure 2 are in contact. In order to

distinguish between the two types of constraints the former will be

called a permanent constraint and the latter will be called a temporary
constraint [5].

4

0

Figure 3 - Temporary constraint between bodies 4 and 6

Manyprocedures have been developed for both the inverse and

forward dynamics of systems with permanent constraints using recursive

relationships for efficiency. References [2, 3, 6] represent recently

reported research efforts in rigid body inverse dynamics using recursive

formulations of the Newton-Euler, Kaneand Lagrange methods,
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respectively. Recursive formulations of the forward dynamics of rigid

body systems with permanent constraints are significantly fewer in

number and more intricate in their derivation. References [7-9]

represent the currently reported procedures of this type.

Armstrong [7] hypothesized the existence of a linear recursive

relationship between the motion of a forces applied to a body and the

motion of and forces applied to its neighbors. He defines a set of

recursion coefficients for each body and shows how the coefficients for

a body may be calculated in terms of those of one of its neighbors. The

coefficients are then used to calculate the acceleration of each body.

The computational complexity of this method is O(n), but the coefficient

of n is quite large. The method is applicable to robots with spherical

joints, but a modification is included in Appendix II [7] for revolute

joints. This modification increases the computational requirement

significantly, although the methods remains O(n).

Walker and Orin [8] describe four methods of solving the forward

dynamics problem for systems with revolute or prismatic joints. Three

of these m_thods are based efficient techniques for solving the inverse

dynamics problem. The computational complexity of each of these :nethods

is O(n3), however the coefficients of the higher powers of n are

relatively small. The fourth method discussed is based upon a recursive

technique for constructing the moment of inertia matrix. The concept of

composite center of mass and moment of inertia matrix of a partial set

of bodies at the end of the chain is used in this recursion. The fourth

method has a computational complexity of O(n2), however the coefficient

of the n2 term is large.

The basic approach of Walker and Orin's O(n 3) algorithm can be

summarized by following Featherstone [9]. The equations of motion can

be expressed in the form
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= A(q) _ + _c(q, q', x) (3)

where % is the vector of generalized forces acting at the joints;

_, _, _ are the generalized coordinate vector and its time derivatives;

A is the generalized inertia matrix and c is the vector of Coriolis,

centrifugal and external forces x.

An algorithm for solving inverse dynamics can be thought of as an

implementation of a vector function in the form

= __(q,_, _, x) (4)

which states % is obtained from the generalized coordinates, the

generalized speeds, the generalized acceleration and the external force

acting on the system. It is seen that (cf (3))

c(q, i, x) : d(_, q, 0, x) (5)

the calculation of c is the special case of calculating the inverse

dynamics when the generalized acceleration is zero.

The forward dynamics calculation is conveniently partitioned into

three steps: the calculation of _, the calculation of A, and the

solution of the set of simultaneous equations

A_ :_T-_c (6)

For _. The computational complexity of the first step is 0(n), the

second step is 0(n 2) and that of the third is 0(n3). This approach is

referred to as the composite rigid-body method.

Featherstone [9] describes an extension of Armstrong's method to

system with revolute and prismatic joints and uses a spatial notation
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consisting of 6X1 spatial vectors, 6X6 spatial transformation matrices

and 6X6 spatial inertias. He refers to this method as the articulated-

body method.

The articulated-body method starts with the equation

i : z - i) (7)

which states that _ is a function of _ and Z - _ without implying the

need to calculate a generalized inertia matrix.

The calculation is again conveniently partitioned into three steps:

the calculation of c, the calculation of the inhomogeneous articulated-

body inertias for each body starting with the end effector and

proceeding sequentially to the reference body, and the generalized

accelerations are then calculated for each body starting at the

reference body and proceeding sequentially to the end effector. The

computational complexity of each step is O(n).

The computational complexity of Armstrong's method is greater than

either of the most efficient of Walker and Orin's O(n 3) methods or

Featherstone's articulated-body method. The best Walker and Orin method

is more efficient than the Featherstone for values of n less than twelve

[9]. Either the Armstrong nor the Walker and Orin nor the Featherstone

methods provide for the calculation of the constraint forces of the

joint. In this sense these algorithms are not complete. The next part

describes some methods of incorporating the constraint equations and

finding theconstraint forces.

INCORPORATING CONSTRAINTS

ReFerences [5, 10-15] represent a partial list of recently reported
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research efforts on dynamics formulations for constrained motion. The

equations of motion for a system of rigid bodies with open chain or tree

structure (as in Figure 2) may be written as in equation (6). In

systems where additional restrictions have been placed on the motion of

the bodies, these constraints can usually be placed in the form

Bi : g (8)

where B is an mxn matrix with m<n and g is n vector. Both B and _ are

functions of £ and time t. Holonomic constraints can always be written

in the form of equation (8). Simple or Pfaffian nonhomonomic

constraints can also be written in the form of equation (8).

There are two fundamental approaches to solving tile equations (6)

and (8) for such systems [14]. One can introduce unknown generalized

forces of constraint between the constrained bodies by the technique of

undetermined multipliers and then solve the equations of motion

simultaneously with the constraint equations to determine the

generalized constraint forces as well as the kinematic variables.

Alternatively, one can use the constraint equations to reduce the

dimension of the equations of motion to be solved, eliminating the need

to represent or solve for generalized constraint forces. The second

approach has the advantage of providing, for solution, a set of

equations of minimum dimension. The difficulty lies in its

implementation.

In the special case of holonomic constraints, one might integrate

equation (8) and solve explicitly for a subset m of the generalized
A

coordinates in terms of the remaining 1 = n - m. Substitution for these

generalized coordinates in equation (6) permits reduction of the set of

equations to be solved to l second order equations. In general, this

reduction is not easily accomplished.
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If equation (8) is nonintegrable (i.e., nonholonomic), then m of

the generalized coordinates cannot be solved for in terms of the

remaining I. One would like to solve for m of the elements of q', but

the result cannot be substituted effectively into the second order

equation (6). This obstacle can be avoided by converting equation (6)

to first order form [10]. A large obstacle is the potential for the

rank r of the matrix B in equation (8) to be less than the row dimension

m. These state of affairs could occur in a system changing

configuration, resulting in singularities in the numerical solution.

Other methods which avoid all singularity problems exist and are

described next.

The n generalized speeds, _, may be expressed in terms of l new

generalized speeds, _, by hypothesizing a relationship of the form

: Bu+__ (9)

where B is an nxl matrix and _ is an n vector.

The solution to equation (8) for q falls into one of two

categories. If _ does not lie in the column space of B (i.e., if

cannot be formed by a linear combination of the columns of B), the

constraints are inconsistent, the problem is ill-posed and no solution

can be found for _. If g does lie in the column space of B, at least

one solution exists for _. Let Z be an nxl matrix with linearly

independent columns that form a basis for the null space of B, that is,

BZ : 0 (10)

and let Y be an nxm matrix whose columns complete a basis for the vector

space Rn. The general soluation to equation (8) is

= zA - Yz (11)
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where y is a vector of m unique scalars such that

_g_: BYy (12)

and z is a vector of 1 independent quantities describing the constrained

system. The vector u of generalized speeds for the constrained system
I

may be defined as

A
u : z (13)

By substituting from equation (13) into (11), one obtains an

equation of the form of equation (9) with

B: Z (14)

and

: "Yz (15)

The preceding development demonstrates that it is always possible

to find an equation of the form of equation (9) for a system subjected

to constraints in the form of equation (8). However, it does not give

an operational procedure for producing equations (14) and (15). The

matrices Z and Y are not unique, and many approaches for constructing

them can be envisioned. The problem is equivalent to that of

constructing a generalized inverse of B, of which the Moore-Penrose

generalized inverse is a particular example. Singular value

decomposition [12, 14] and the zero eigenvalue theorem [II], are two

methods of calculating this inverse. The remainder of this part will

briefly outline two methods using Kane's equations of motion.

Kane's equations of motion [10] may be written in the remarkably

simple form
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f + f* = 0 (16)

where f is the n-vector of generalized active forces and _* is the n

vector of generalized inertia forces. The set of equations (6) may be

efficiently cerived from the set of equations (16) by relatively simple

scalar products and recursive kinematic relationships [3, 4].

Kane's equations for constrained systems may be found by solving

equation (8) for m of the _ in terms of the remain I, as described

before. This leads to a reduced set of equations of motion.

k + k* = 0 (17)

where k and k* are l-vectors of reduced generalized active and inertia
m

forces. Equations (17) together with equations (8) then constitute a

system of n equations for the n-vector _.

For complex multibody systems the solution of equations (8) for m

of the _ may not be convenient or even possible. Also, the generalized

constraint forces have been eliminated from the analysis. Although this

reduces the dimension of the problem, it also means the analysis is

incotnplete.

To develop a method which includes the generalized constraint

equations and retains the advantageous features of the previous method,

let the constraining forces and moments associated with the constraint

equations (8) be represented by a series of forces f' applied at points- i

Pi' i = 1, ...,N', together with a series of couples with moments _m''3

applied to bodies Bj, j = 1, ...,M'. Assuming that m_< 3 (N' + M'), the

following analysis is applicable [15].

Let the Pi and Bj have specified motions given by _Vpi(t) and _j(t).

Let tile scalar components of these vectors, relative to a set of basis
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vector fixed in the reference body, be collected into arrays V and (_

whose elements may be identified with the elements of g in equation (8).

That is,

m

Vi : gi : Z bij qj

mi j=1

(18)

for i = 1,...,3N' for the Vi and i = 3N' + 1, ...,3(N'+M') for the mi"

Next let the components of F' i and M'. in the directions of the

components of --_i and _j be designated as @i and _j. Then the power, P,

produced by the constraining Forces and moments is

3N' 3M'

P = Z _i Vi Z _j _.j (19)

i:l j:l

Let _ be an m-vector whose elements are @i and _j. P may now be written
as

p : __Tg = _ T B q_" (20)

where the superscript T designates the transpose.

Since neither f'-- i nor m j are functions of _, the generalized
forces associated with these constraining forces and moments are

f' : _P/_q" : B T _. (21)

where f' is the generalized force vector.

In view of the foregoing analysis, let the generalized active

forces be separated into two parts consisting of: those developed From

constraint forces and moments and those developed from applied forces

and moments. Let these be designated f' and f. Then Kane's equations
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are

f' + f + f* = 0 (22)

Substitute for f' in equation (22) using equation (21)

BT }, + f + f* = 0 (23)

Taken together with the constraint equations (8) they constitute a set

of n+mequations for the n elements of _ and the m elements of __.

Supposethat an nxl matrix

basis for the null space of B.
BT we obtain

has been found such its columns form a

Then by premultiplying equation (23) by

BTf + BTf. = 0 (24)

since

BB : BTB T : 0 (25)

Equation (24) together with equations (8) then represent a set of n

equations for the n elBnents of _. Once _ and _ are determined, _ may

be determined by back substitution into equation (23).

The method may be viewed as a generalization of the psuedo-

coordinate method of Kane [I0]. The analysis is develaped with the

system unrestrained. However, a difference is that the constraint

forces and moments are formally introduced through a product of

undetermined multipliers with coefficients of the constraint equations.

The concept is simple, but the implications extend beyond the task

of finding constraint forces and moment components. For example, when
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comparedwith Lagrange's equations with undetermined multipliers, the

procedures are similar. However, with Kane's equations the generalized

speeds may be employed as the fundamental kinematic variables. Also,

holonomic as well as simple nonholonomic constraints may be accommodated

directly. Finally, the constraint force and momentcomponentsmay be

either evaluated or eliminated from the analysis. In the latter case

the resulting equations are equivalent to the standard form of Kane's

equations for constrained systems.

To illustrate these concepts consider Figure 4 which depicts the

generalized forces in the n-dimensional space of the generalized speeds.

The force triangle is a representation of equation (22). In this

context, the generalized forces _ and k_*, used in Kane's equations for

constrained systems, are seen to be projections of f and f* onto the

directions BT, the generalized inverse of B.

l

f

k

k*

Figure 4 -A geometric interpretation of the general i_l f)rces
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CONCLUSIONS

Very efficient procedures have been developed for solving the

inverse dynamics problem. Representative solution method using

recursive formulatins of the Newton-Euler, Kane and Lagrange methods are

described. A generalization of Kane's method [15] has been shownto be

capable of efficiently and completely accommodatingvarious constraints

applied to a system whereas the others have not. This is not to say

that this cannot be done. More research is certainly appropriate to

develop parallel techniques using the Newton-Euler and Lagrange methods.

The forward dynamics problem has been more elusive. Although very

efficient procedures have been developed for the special cases of
permanent constraints of the revolute, prismatic and spherical types, a

corresponding generalization has yet to be developed. Indeed, none of

the forward dynamic algorithms available can efficiently computer the

constraint forces and moments for even permanent constraints. Research

is to determine efficient and complete methods of generalizing the

solution to the forward dynamics problem, if this is possible.
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